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Introduction: Long-term growth

3 factors are responsible for this long-term growth

1 Increase of the population : more people can produce a
greater quantity of goods and services

2 Stock of equipment and facilities has increased overtime

3 Techniques of production have led to increases in the
productivity
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Introduction: Long-term growth

In spite of this long-term growth, evidence on periods with
negative growth rates = economic recessions. This
corresponds to business cycles.

Not related to long-term factors.

Clearly visible on unemployment rate, with asymmetric
behaviour.

Is this series stationary ?
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US unemployment rate

1950 1960 1970 1980 1990 2000 2010
2

3

4

5

6

7

8

9

10

11
Pe

rc
en

t

Unemployment	Rate

Shaded	areas	indicate	U.S.	recessions Source:	U.S.	Bureau	of	Labor	Statistics fred.stlouisfed.org



Error-Correction Models Lecture

Introduction

How to deal with integrated I (1) time series?

Option 1: Stationarize by differentiation (eg: ∆ log) or
detrending (eg: HP filter, linear trend ...) to get I (0) series

Option 2: Keep the information and put forward a model that
accounts for common trends = Error-Correction Models
(ECM hereafter)
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Example: US GDP and US Employment (in logs)
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Introduction

From an economic point of view, the presence of equilibrium
relations justifies the presence of cointegration

Examples:
1 Consumption and income
2 Money, interest rate, output and prices
3 Output and employment
4 Purchasing power parity

The stationary cointegration relationship of the integrated
variables can be considered as a long-run equilibrium

Any short-run deviation from the long-run equilibrium will
dissipate after some periods, depending on the dynamics of
the model (more or less persistent)
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Definitions

Dickey-Fuller tests

Let’s consider a given variable (Xt), the ADF test is based on
the following regression:

∆Xt = C + δt + ρXt−1 +

p∑
i=1

ai∆Xt−i + ut ,

where ut is a weak WN, p in the AR order for ∆Xt

Constant C and linear trend δt may or not be included in the
regression, leading to various possible tests:

1 C = 0 and δ = 0
2 C = 0 and δ 6= 0
3 C 6= 0 and δ = 0
4 C 6= 0 and δ 6= 0
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Definitions

Dickey-Fuller tests

Under the null hypothesis H0 : ρ = 0 the series Xt is assumed
to be weakly stationary (I (0))

The null hypothesis H0 : ρ = 0 is tested using the Student
statistics for ρ, that is ρ̂/

√
Var(ρ̂).

Standard critical values are not theoretically available but
have been tabulated by Dickey-Fuller and many others
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Definitions

Definition of cointegrated series

Let’s first consider a bi-variate case with 2 variables of interest
xt and yt

We say that the two time series xt and yt are supposed to be
cointegrated if the following conditions are verified:

1 xt is I (1) and yt is I (1)
2 There exist (α, β) such as αxt + βyt is I (0)

We note (xt , yt) is CI (1) and (α, β) the cointegration vector
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Definitions

Definition of cointegrated series

The previous definition can be generalized to n series
(y1

t , . . . , y
n
t ) = yt supposed to be integrated of order 1.

The cointegration vector is then β = (β1, . . . , βn) such β′xt is
I(0)

β1 is often assumed to be equal to 1
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Error-Correction Models

Basic ECM with 2 variables

A model able to account for cointegration in the bivariate
case (with variables in logs) is:

∆yt = c + α∆xt + γ(yt−1 − βxt−1) + εt

where
α : short-term elasticity
β: long-term elasticity
γ: speed of adjustment to the long-run equilibrium, γ < 0

The ECM has 2 components: short-term (with I (0) variables)
and long-term (with lagged I (1) variables)
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Error-Correction Models

Basic ECM with n variables

Let’s consider n variables (y1t , . . . , ynt), supposed to be
co-integrated

A model able to account for cointegration in the n-variate
case (with variables in logs) is:

∆y1t = c +
n∑

i=2

αi∆yit + γ(y1,t−1 −
n∑

i=2

βiyi ,t−1) + εt

where
α = (α2, . . . , αn): short-term elasticities
β = (β2, . . . , βn): long-term elasticities
γ: speed of adjustment to the long-run equilibrium, γ < 0
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Error-Correction Models

Extended ECM with n variables

Let’s consider a given I (1) variable yt to explain

We can put forward variables that are likely to explain yt
1 in the short-run (m-vector xt , supposed to be I (0))
2 in the the long-run (q-vector zt , supposed to be I (1))

Thus the model becomes:

∆yt = c +
m∑
i=1

αixit + γ(yt−1 −
q∑

i=1

βizi ,t−1) + εt

Note that past values of ∆yt can enter into the short-run
vector xt (AR components)
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Error-Correction Models

Vector-ECM with n variables

Let’s consider a VAR(p) in level

Φ(B)yt = εt ,

as

∆yt = −Πyt−1 + Γ1∆yt−1 + . . .+ Γp∆yt−p+1 + εt

where
Π = (I − Φ1 − . . .− Φp)

and
Γi = −(Φi+1 − . . .− Φp)
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Error-Correction Models

VECM with n variables

It is well known that yt is weakly stationary if |Φ(z)| = 0 has
all the roots outside the unit circle

In the presence of unit roots, it is |Φ(1)| = 0 which implies
that Φ(1) has a reduced rank, i.e. smaller than n

Since Φ(1) = I −Φ1 − . . .−Φp, we have Φ(1) = Π. Thus the
rank of Π is associated to the presence of unit roots in the
vector yt
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Error-Correction Models

VECM with n variables

If all the n variables are stationary, then Π will have full rank
n. That is the VAR(p) in level is a VAR(p) for stationary
variables

If all the n variables are integrated and not cointegrated, we
have Π = 0 and the model is a VAR(p − 1) in first differences
such as:

∆yt = Γ1∆yt−1 + . . .+ Γp∆yt−p+1 + εt

If the variables are integrated and cointegrated , Π has rank r
with 0 < r < n, r being the number of cointegration relations,
namely the number of independent stationary linear
combinations of the n integrated variables.
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Error-Correction Models

VECM with n variables

In that case:
Π = α× β′

α is (n × r) and β′ is (r × n)

Matrix β contains the coefficients of the r independent
stationary combinations of the n integrated variables,

β′yt−1 ∼ I (0)

The model becomes a Vector ECM (VECM)

∆yt = −αβ′yt−1 + Γ1∆yt−1 + . . .+ Γp∆yt−p+1 + εt

where matrix α contains for each equation the loadings of the
r cointegrating relationships β′yt−1
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Cointegration test a la Engle-Granger (1987)

Engle-Granger cointegration test

Engle and Granger (1987) suggest the following 2-step
procedure to test for the presence of cointegration among I (1)
variables (y1t , . . . , ynt)

1 Estimate by OLS the regression:

y1t = β2y2t + . . .+ βnynt + ut (1)

2 Get estimated residuals ût and test for unit root. It there is
one, then no cointegration. Otherwise, if ût ∼ I (0), then
variables are cointegrated

Critical values for unit root tests based on ADF tests are
different from those of standard ADF tests. Indeed, ût are
OLS residuals, thus have a minimized variance which could
biased the test toward rejecting a unit root when using ADF
values.
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Cointegration test a la Engle-Granger (1987)

Engle-Granger cointegration test

Engle and Granger (1987) provide proper critical values using
simulations as the asymptotic distribution of the test is
non-standard.

Standard econometric softwares report those tabulated critical
values

If estimated residuals remain I (1), it means that the variables
are not cointegrated, we are in the case of a spurious
regression, i.e. linear regression of I (1) variables that are not
cointegrated.

Another sign of a spurious regression is when the explanatory
power (e.g. R2) is very high.
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Cointegration test a la Engle-Granger (1987)

Engle-Granger cointegration test

Engle-Granger test is intuitive and easy to implement

But the distribution of the OLS estimator β̂ is non-standard,
which complicates statistical inference. Many papers have
tried to provide solutions for this issue.

Another caveat is that the Engle-Granger does not allow for
to determine the number of cointegrated relationships, r .
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Cointegration test a la Engle-Granger (1987)

Engle-Granger cointegration test

Once the test has been carried out, the full model can be
estimated

1 Get the estimated stationary residuals from the long-run
equation:

ût = y1t − β̂2y2t − . . . β̂nynt
2 Run the short-run equation:

∆y1t = c +
n∑

i=2

αi∆yit + γût−1 + εt
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Cointegration test a la Engle-Granger (1987)

Engle-Granger in the bivariate case

2-step estimation Ã la Engle-Granger:
1/ Long-run estimate by OLS : β̂
ût = yt − β̂xt
Check if ût is I (0).
2/ Short-run estimate by OLS:

∆ŷt = ĉ + α̂∆xt + γ̂ût−1

An extended model by acocunting for short-run dynamics

∆yt = c +

p∑
i=1

φi∆yt−i +

q∑
i=0

αi∆xt−i + γ(yt−1 − βxt−1) + εt
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Cointegration test a la Johansen

Johansen cointegration test

Johansen (1995) developed a Maximum Likelihood approach
to test for the cointegration rank r , obtain ML estimators of α
and β and test specific hypotheses on parameters

The procedure sequentially test the folllwing hypotheses:
1 H0: r = 0 vs H1: r = 1
2 H0: r ≤ 1 vs H1: r = 2
3 H0: r ≤ 2 vs H1: r = 3

...

If at step 1, the test does not reject H0, we set r = 0.
If at step i, the test rejects H0, we set r = i
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Cointegration test a la Johansen

Johansen cointegration test

Johansen (1995) suggested 2 statistics to be used in each step
of the sequential procedure: the trace test and the maximum
eigenvalue test. In practice, it is common to compute both
statistics and compare their outcomes.

Both have asymptotic distributions that depend on the
deterministic components of the model. In practice, it is
common to compute for various model specifications.
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Cointegration test a la Johansen

Johansen cointegration test

Once r is determined by the test, we need to identify the
coefficients of the cointegration vectors.

But for any matrix Q of dimension r × r , we get:

Π = αβ′ = αQQ−1β′ = γδ′

This means that the cointegration coefficients and the
loadings are not uniquely identified. Some restrictions have to
be imposed.

Once r has been determined and α and β identified,
estimation and inference in the VECM is standard
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Forecasting

Forecasting with VECM with n variables

The VECM forecast for h = 1 is:

∆ŷt(1) = −α̂β̂′yt + Γ̂1∆yt + . . .+ Γ̂p−1∆yt−p

Forecasts for the level of yt+1 is thus given by:

ŷt(1) = yt + ∆ŷt(1)

For h > 0, we iterate the forecasts such that

∆ŷt(h) = −α̂β̂′ŷt(h−1)+Γ̂1∆ŷt(h−1)+. . .+Γ̂p−1∆ŷt(h−p)

where forecasts on the rhs are replaced by true values when
available
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Forecasting

Forecasting with VECM for h = 1

As for the specific bivariate case with (yt , xt), the
1-step-ahead predictor for the level of yt+1 is

ŷt(1) = yt + α̂(x̂t(1)− xt) + γ̂(yt − β̂xt)

Note that in that case, we need to forecast the 1-step-ahead
value of xt
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Forecasting

Alternative forecasts with n variables

The VAR model in differences is a first alternative model

In the presence of cointegration, the VAR in differences is
misspecified due to the omission of the cointegration
relationships β′yt−1.

Hence forecasts are suboptimal

However, in the case of unaccounted changes in the
cointegrating vectors β or in their loadings α, VAR forecasts
could be more robust.

Indeed, the VECM constraints the long-run forecasts to satisfy
to the relationship β′ŷ t(h) ∼ I (0), i.e. forecasts go back to
their long-run equilibrium.
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Forecasting

Alternative forecasts with n variables

The VAR model in levels is a second alternative model

The model is correctly specified but parametes are not
efficiently estimated as the cointegration restriction is not
imposed

But if the sample is long enough, the OLS estimates remain
consistent and will reflect at some mpoint the cointegrating
restrictions.

Moreover, this model does not require the specification of the
cointegration rank r , which maybe an advantage when there is
uncertainty.

Empirical comparisons between forecast stemming from VAR
in differences, VAR in levels and VECM make sense
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Forecasting
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